CS 491 CAP
Basic Graph Algorithm

Zhengkai Wu

University of Illinois at Urbana-Champaign

Oct 06, 2017
Today

♦ Minimum Spanning Tree (MST)
 ▪ Kruskal’s Algorithm

♦ Shortest Path
 ▪ Single Source: Dijkstra Algorithm / Bellman-Ford Algorithm
 ▪ All Sources: Folyd-Warshall Algorithm
Minimum Spanning Tree

◊ Given a weighted, undirected graph: $G = (V,E)$
◊ Find a subset of E such that
 ▪ Connecting all vertices
 ▪ Without any cycles
 ▪ Minimum possible total edge weight
Cycle Property

◊ For any cycle C in the graph, if the weight w of an edge e in C is larger than any other edges in C, the e cannot belong to any MST.

◊ Proof sketch:
◊ Consider there is such an edge e in an MST T1. e breaks T1 into two subgraphs. We can find an edge in C that connects these two subgraphs. Thus replacing e with that edge results in a tree with less total weight.
Cut Property

◊ Cut: C=(S,T) while $S \cap T=\emptyset$ and $S \cup T=V$

◊ Cut-set:{(u,v) | $u \in S$ and $v \in T$}

◊ For any cut C, if e is the unique minimum weight edge in the cut-set of C, then e belongs to all MSTs.

◊ Proof Sketch:
◊ If e not in MST T_1, adding e will form a cycle, replacing the other edge of the cycle in the cut-set will result in a better tree.
Min-cost Edge Property

◊ If the minimum cost edge \(e \) of a graph is unique, then this edge is included in any MST.

◊ Proof Sketch:
◊ If \(e \) not in MST \(T_1 \), adding \(e \) will form a cycle, replacing the any other edge in the cycle will result in a better tree.
Kruskal Algorithm

- Sort the edges in increasing order of weight
- Iterate through each edge e in order, until size of the MST = $|V| - 1$
 - If e connects two different connected components, then add e to the MST and merge the two connected components (using disjoint set data structure)
 - Otherwise, ignore e and move on
Example
Disjoint-set Data Structure

◊ Need to support three operations:
 ▪ MAKE-SET(v): Initialization, generate a set with one element v.
 ▪ FIND-SET(v): Find the representative of the set containing v.
 ▪ UNION(u,v): Union the two sets containing u and v.

◊ Using a rooted tree to represent the set, storing the father in the array f[v].
 ▪ If f[v] = v, then v is the representative.
 ▪ FIND-SET(v): Recursively do FIND-SET(f[v]) until f[v] = v.
 ▪ UNION(u,v): let f[FIND-SET(v)] := FIND-SET(u).

◊ Too slow. Complexity can reach O(n^2) in n steps.
Disjoint-set Data Structure

Two optimization

- Union by rank: Union the tree with smaller depth to the larger one.
- Path Compression: Let every $f[v]$ to its root when doing a FIND-SET

```
function MakeSet(x)
    if x is not already present:
        add x to the disjoint-set tree
    f[x] := x
    rank[x] := 0

function Find(x)
    if f[x] != x
        f[x] := Find(f[x])
    return f[x]

function Union(x, y)
    xRoot := Find(x)
yRoot := Find(y)
    if xRoot == yRoot
        return
    if rank[xRoot] < rank[yRoot]
        f[xRoot] := yRoot
    else if rank[xRoot] > rank[yRoot]
        f[yRoot] := xRoot
    else
        f[yRoot] := xRoot
        rank[xRoot] := rank[xRoot] + 1
```
Complexity

◊ By using the disjoint-set data structure.
◊ The time complexity of Kruskal algorithm become $O(|E|\log|E|)$ (sorting time) + $|E|$ (amortized complexity of disjoint-set)
UVA 10842

Given a graph, find a spanning tree with the minimum edge in the tree maximized.

Note that the maximum spanning tree is the tree we want. Proof: Consider the procedure of Kruskal algorithm.
UVA 10600

Given a graph. Print the value of MST and the second-minimum spanning tree. (n <= 200)

The second minimum spanning tree must be the MST replacing one edge.
◊ N villages need to be connected, given their coordinates (x_i, y_i) and height h_i.
◊ The distance is the euclidian distance between two villages and the cost is the difference of their height.
◊ Find the minimum ratio of the sum of distance divided by the sum of cost.

Binary search the answer, suppose the answer to be k. We need to determine whether k is satisfiable. This is equivalent to finding a spanning tree in which $\frac{\text{sum}(\text{dist}_i)}{\text{sum}(\text{cost}_i)} \leq k$. Which is $\text{sum}(\text{dist}_i-k*\text{cost}_i) \leq 0$. Which is equivalent to find the maximum spanning tree of edge weight $\text{dist}_i-k*\text{cost}_i$.
Shortest Path

◊ Given a weighted directed/undirected graph: $G = (V,E)$.
◊ Finding a path between node u and v that minimize the weight of the path.
◊ Different type of shortest path.
 ▪ Allow negative weight?
 ▪ If negative weight, is there a loop with negative weight?
 ▪ Dense or Sparse graph?
Relaxation

◊ Relax Operation:
 - $D[v] \leftarrow \min(D[v], D[u] + w)$

◊ Update the value of the target node using the edge of weight w.
Dijkstra Algorithm

◊ Single Source Shortest Path (SSSP) with no negative weight.
◊ Time complexity: $O(|E| \log |V|)$ using priority queue.

Pseudocode:

- Maintain a set S that stores nodes for which the shortest path has already been determined
- Maintain a vector $D[v]$ to store the shortest distance estimate from s
- Initially, $S \leftarrow s$, $D[v] \leftarrow weight(s, v)$
 - If $e(s, v) \notin E$, $D[v] \leftarrow \infty$
- Repeat until $S = V$
 - Find $v \notin S$ with the smallest $D[v]$, and add it to S – Use priority queue for better performance
 - For each edge $v \to u$ with weight w,
 - Relax(u, v, w)
Bellman-Ford Algorithm

◊ SSSP allowing negative weight.
◊ Can detect negative loop.
◊ Time Complexity: $O(|E| \times |V|)$

Pseudocode:
◊ Initialize $D[s] \leftarrow 0$ and $D[v] \leftarrow \infty$ for all $v \neq s$
◊ For $k = 1 \ldots V - 1$:
 ▪ For each edge $u \rightarrow v$ of weight w:
 ▪ Relax(u,v,w)
◊ For each edge $u \rightarrow v$ of weight w:
 ▪ If $D[v] > D[u] + w$:
 ▪ The graph contains a negative weight cycle
SPFA

◊ A special optimization of Bellman-Ford Algorithm.
◊ Use a queue to only updates the node that get affected by the relaxation
◊ Have a good performance on a lot of graphs. But the worst can still be $O(|V||E|)$

Pseudocode:
◊ Initialize $D[s] \leftarrow 0$ and $D[v] \leftarrow \infty$ for all $v \neq s$ and queue q to contain only s.
◊ While not q.empty() do:
 • $u = q$.pop();
 • For each edge starting from u: $u \rightarrow v$ of weight w:
 • Relax(u,v,w)
 • if $D[v]$ is decreased and v is not in q: q.push(v)
Floyd-Warshall Algorithm

◊ Computes All Pairs Shortest Path (APSP)
◊ Time Complexity: $O(|V|^3)$

Pseudocode:
Initialize matrix D with weights from the given graph (∞ if there is no edge)
for $k = 1 \ldots V$:
 for $i = 1 \ldots V$:
 for $j = 1 \ldots V$:
 $D[i][j] \leftarrow \min(D[i][j], D[i][k] + D[k][j])$
Floyd-Warshall Algorithm

◊ Why does it work? Dynamic Programming
 ▪ \(D[k][i][j] \): weight of shortest path from \(i \) to \(j \) using vertices numbered \(\leq k \) as the intermediate nodes
◊ The recurrence relation then is
 ▪ \(D[k][i][j] = \min(D[k - 1][i][j], D[k - 1][i][k] + D[k - 1][k][j]) \)
 • This holds because we have two possible choices: either use \(k \) as the intermediate node, or don’t
◊ Turns out the first dimension is not necessary, can just overwrite
◊ Be careful that \(k \) must be the outmost loop variable.
Calculate the number of different shortest paths.

After calculate the shortest path $d[i]$. Do another dynamic programming. $\text{Count}[i] += \text{Count}[j]$ (if $d[i] = d[j] + w$)
Find the minimal simple loop in the given weighted graph. (N<=100, M<=10000)

Using Floyd Algorithm, in the outmost loop, when we haven’t updating the d[i][j] using node k. The current shortest path d[i][j] cannot go through k. So we can calculate the d[i][j]+g[j][k]+g[k][i] to be the candidate minimal loop. Thus we can calculate all possible loop candidates with the Floyd Algorithm going to get the minimal one.