CS 491 CAP
Intro to Dynamic Programming

Jingbo Shang
University of Illinois at Urbana-Champaign
Sept 29, 2017
Today

♦ What is DP?
♦ 3 example problems
 - Introductory example
 - Longest Common Subsequence
 - Coin Change
What is Dynamic Programming?

◊ Algorithm design technique/paradigm
◊ “Method for solving complex problems by breaking them down into smaller subproblems” - Wikipedia
◊ This definition will make more sense once we see some concrete problems
Prerequisites

◊ Familiar with recursion
Example 1

◊ Given an array A of N integers
◊ You want to pick some elements from the array
◊ However, no two picked elements can be adjacent
◊ How can you pick the elements so that their sum is maximized, while satisfying the constraint?
◊ Compute the optimal sum you can obtain
◊ Input: A = [7, 1, 5, 8, 2]
◊ Answer: 15 (pick 7 and 8)
Recursive solution

◊ Consider the last element, A[N]
◊ Any solution will either contain A[N] or not
◊ Case 1) If a solution contains A[N]
◊ Case 2) If a solution doesn’t contain A[N]
 ▪ No restriction on A[N - 1], so we can reduce the problem into solving for A[1 .. N - 1]
◊ Take the maximum of these two cases
◊ Base case:
 ▪ N = 1, return A[1]
 ▪ N = 2, return max(A[1], A[2])
Recursive Solution - Pseudocode

procedure solve
 input: A[1...N], an array of integers
 output: the optimal sum that does not contain adjacent numbers

 if N == 1:
 return A[1]
 if N == 2:
 return max(A[1], A[2])
 return max(solve(A[1...N-1]), solve(A[1...N-2] + A[N]))
Too slow...

◊ This solution is exponential!
 ▪ We compute the same subproblem multiple times
◊ How can we improve?
◊ Each subproblem can be represented as the last index of the subarray
 ▪ Take the array out of the parameter and represent with an integer instead
◊ If we have already computed the solution for a subproblem, just return the computed value
◊ Save the computed solution to the subproblem in a table
◊ This technique is called “memoization”
Recursive Solution with Memoization

use D[1...N] to store the results of the subproblems, mark them as not computed initially

procedure solve
 input: A[1...N], an array of integers
 output: the optimal sum that does not contain adjacent numbers

 if D[N] is not computed:
 if N == 1:
 if N == 2:
 D[N] = max(A[1], A[2])
 else
 D[N] = max(solve(A[1...N-1]), solve(A[1...N-2] + A[N]))

 return D[N]
Iterative Solution

◊ The improved recursive solution is O(N)
◊ We can improve the speed (a bit) by translating the recursive solution to an iterative solution
 ▪ Asymptotic running time is still O(N)
 ▪ But we get rid of recursion overhead, etc...
 ▪ However downsides exist, will address later
Iterative Solution - Pseudocode

procedure solve

input: A[1...N], an array of integers
output: the optimal sum that does not contain adjacent numbers

for i = 3 to N:
 D[i] = max(D[i - 1], A[i] + D[i - 2])
return D[N]
Example 2

◊ You are given two strings A and B of length N and M
◊ Compute the length of the longest common subsequence of A and B
◊ A subsequence of a string S is defined as $S[i_1]S[i_2]...S[i_n]$ such that $1 <= i_1 < i_2 < \ldots < i_n <= \text{len}(S)$
 ▪ Intuitively, a string that you can obtain after deleting some number of characters from the string
◊ A longest common subsequence of two strings A and B is the longest subsequence that appears in both A and B
LCS (Longest Common Subsequence) Example

String A: a c b a e d

String B: a b c a d f
Recursive solution

◊ Consider A[N] and B[M] (the last characters)
◊ Case 1) A[N] = B[M]:
 ▪ Easy to see that A[N] (or B[M]) is the last character of the desired LCS, so we can reduce the problem into computing LCS length of A[1 .. N - 1] and B[1 .. M - 1]
 ▪ Add 1 to the recursively computed LCS length
Recursive solution contd

◊ Case 2) A[N] != B[M]:
 ▪ Clearly, any desired LCS must be in A[1 .. N] and B[1 .. M - 1] OR in A[1 .. N - 1] and B[1 .. M]
 ▪ Reduce the problem into computing LCS length of A[1 .. N] and B[1 .. M - 1] and of A[1 .. N - 1] and B[1 .. M]
 ▪ Take the maximum of these two subcases
◊ Base case: if either of the strings is empty, then clearly the length of the LCS is 0
Recursive Solution - Pseudocode

algorithm lcs

input: two strings, A[1...N], B[1...M]

output: the length of the longest common subsequence of the two strings

if either A or B is empty:
 return 0

if A[N] == B[M]:
 return lcs(A[1...N-1], B[1...M-1]) + 1

else
 return max(lcs(A[1...N-1], B[1...M])
 lcs(A[1...N], B[1...M-1]))
Recursive Solution With Memoization

use $D[0...N][0...M]$ to store the results of the subproblems,
mark the whole array as not computed

algorithm lcs
 input: two strings, $A[1...N]$, $B[1...M]$
 output: the length of the longest common
 subsequence of the two strings

 if $D[N][M]$ is not computed:
 if either A or B is empty:
 $D[N][M] = 0$
 if $A[N] == B[M]$:
 $D[N][M] = lcs(A[1...N-1], B[1...M-1]) + 1$
 else
 $D[N][M] = \max(lcs(A[1...N-1], B[1...M]), lcs(A[1...N], B[1...M-1]))$
 return $D[N][M]$
Iterative Solution

algorithm lcs

input: two strings, A[1...N], B[1...M]

output: the length of the longest common subsequence of the two strings

for i = 0 to N:
 D[i][0] = 0

for i = 0 to M:
 D[0][i] = 0

for i = 1 to N:
 for j = 1 to M:
 if A[i] == B[j]:
 D[i][j] = D[i-1][j-1] + 1
 else
 D[i][j] = max(D[i-1][j], D[i][j-1])

return D[N][M]
LCS Running time

◊ The running time of this algorithm is $O(NM)$
More on Dynamic Programming

◊ So far, the problems you’ve seen asked to maximize/minimize some quantity
◊ These are examples of optimization problems
◊ DP is also widely used in solving combinatorics problems
◊ i.e. Count the number of ways to do something, compute the probability, etc
◊ We’ll solve a simple combinatorics problem today
Example 3

◊ Given an amount N cents
◊ Given a set of coin types C, each type with infinite amount
◊ Count the number of ways to make N cents
◊ Example:
 • $N = 5$
 • $C = [1, 2, 3]$
 • Answer: 5
 • 1, 1, 1, 1, 1
 • 1, 1, 1, 2
 • 1, 1, 3
 • 1, 2, 2
 • 2, 3
Recursive solution

- Suppose C consists of M coin types
- Consider C[M], the Mth coin type
- Two cases: Mth coin type is never used, or is used at least once
 - If the Mth coin type is never used, then the problem reduces to making N cents with the first M - 1 coin types
 - If the Mth coin type is used at least once, then the problem reduces to making N - C[M] cents with the all M coin types
 - N - C[M] enforces that Mth coin type is used at least once
- These two cases are clearly disjoint, so sum these two cases to get the desired result
Recursive Solution - Pseudocode

```plaintext
procedure solve
    input: N, the number of cents
           C[1...M], the value of each type of coin
    output: the number of ways to make N cents

    if N == 0:
        return 1
    if N < 0 or M = 0:
        return 0
    return solve(N, M - 1) + solve(N - C[M], M)
```

Can be easily optimized with memoization.
Time Complexity: $O(NM)$
Recursive vs Iterative Revisited

◊ Which one is better?
◊ Iterative solutions are usually shorter, faster by some constant time
◊ However iterative methods do require the coder to work out the order the subproblems are computed, which could become harder and harder in higher dimensions
◊ Iterative solutions can be easily optimized with memoization and we usually don’t really care about the overheads
Questions?

◊ Memoization/iterative solution for the last problem left as an exercise
 ▪ Can you reduce the space complexity to O(N) instead of O(NM)?)
◊ We will cover more advanced topics in DP few weeks later