CS 491 CAP
Advanced Search & Simulation

Jingbo Shang
University of Illinois at Urbana-Champaign
Dec 1, 2017
Outline

◊ Bitmasks for Pruning
◊ Search Order
◊ Bidirectional Search
◊ A* Search
Outline

◊ Bitmasks for Pruning
◊ Search Order
◊ Bidirectional Search
◊ A* Search
N Queens

◊ Find the total number of layouts of n queens on an $n \times n$ chessboard, such that any two queens will not attack each other.

◊ Bruteforce:
 - Every time, put a queen at (x, y)
 - Mark (\ast, y) and $(x + \Delta, y + \Delta)$ and $(x + \Delta, y - \Delta)$ as attacked
 • This step is $O(n)$
 - Recursion
Bitmask

◊ Query the d-th digit of x
 ▪ $(x \gg d) \& 1$
◊ Set the d-th digit of x as 1
 ▪ $x \mid (1 \ll d)$
◊ Set the d-th digit of x as 0
 ▪ $x \& (\neg(1 \ll d))$
◊ Only keep the last non-zero digit of x
 ▪ $x \& (\neg x)$
N Queens

◊ Mark columns, diagonals only
◊ It becomes $O(1)$

◊ Find the possible position in x-th row
◊ \Leftrightarrow Find the non-zero bits
Outline

◊ Bitmasks for Pruning
◊ **Search Order**
◊ Bidirectional Search
◊ A* Search
Sudoku

◊ 9×9 and 16×16

◊ No same number in a row
◊ No same number in a col
◊ No same number in a sub-square

◊ Find a solution
Sudoku - Brute force

◊ Find an empty cell
◊ Enumerate a possible number to fill
◊ Mark its row, column, and subsquare

▪ Bitmasks could be used again!
Sudoku - Heuristic

- Find an empty cell
- With the **smallest** number of possible numbers
Outline

- Bitmasks for Pruning
- Search Order
- Bidirectional Search
- A* Search
Bidirectional search

◊ Find shortest path given an initial node and a target node.
◊ Two simultaneous searches
 ▪ Start → ... → an overlap! ← ... ← Target
◊ Faster!
 ▪ Suppose both searches expand a tree with branching factor b
 ▪ the distance from start to goal is d
 ▪ Each of the two searches: $O(b^{d/2})$
 ▪ A single search: $O(b^d)$
Bidirectional search

◊ Requirement: the reversed move is easy to obtain
8-puzzle

◇ 1 2 3
◇ x 4 6
◇ 7 5 8

◇ How many different layouts?
◇ Bidirectional BFS is much faster than BFS
k-sum

◊ Given an array $a[1..n]$ and a target sum s
◊ Is it possible to find k numbers such that their sum is exactly s?

◊ $O(n^{\left\lfloor \frac{k}{2} \right\rfloor})$ is desired
Outline

- Bitmasks for Pruning
- Search Order
- Bidirectional Search
- A* Search
A* search

◊ $g(x)$ is the current cost from start to x
◊ Design a heuristic function $h(x)$, which estimates the cost of the cheapest path from x to the goal
 ▪ problem-specific
 ▪ admissible, meaning that it never overestimates the actual cost to get to the nearest goal node
◊ $f(x) = g(x) + h(x)$
◊ Use $f(x)$ as the priority
A* search

◊ Maintain a priority queue \(Q \)

◊ Pick \(x \) with the highest priority \(f(x) \) from \(Q \)
◊ If \(x \) is the goal, \(f(x) \) is the answer
◊ Expand \(x \rightarrow y_1, y_2, \ldots, y_k \)
◊ Push all \textit{unseen} \(y \)’s into \(Q \)
Dijkstra Revisit

◊ Dijkstra's algorithm can be viewed as a special case of A*
 ▪ Pick the unseen closest node
 ▪ $g(x)$ is the current shortest distance
 ▪ $h(x) = 0$
15-puzzle

◊Goal:
◊ 1 2 3 4
◊ 5 6 7 8
◊ 9 10 11 12
◊ 13 14 15 X

◊where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge.
15-puzzle

◊ 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
◊ 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8
◊ 9 x 10 12 9 10 x 12 9 10 11 12 9 10 11 12
◊ 13 14 11 15 13 14 11 15 13 14 x 15 13 14 15 x
◊ r-> d-> r->
15-puzzle

◊ How many different layouts?
◊ $15! = 1,307,674,368,000$
◊ Toooo large for BFS
15-puzzle

◇ Any heuristic?

◇ Sum of Manhattan Distances to their destinations
Recommended Readings

- **USACO 1.4.1 Search Techniques**
- **Bidirectional Search**
- **A* Search**
- **Exact Cover**
- **Dancing Links**
Q&A