<table>
<thead>
<tr>
<th>Introduction</th>
<th>Breaking LL Parsers</th>
<th>Eliminating Left Recursion</th>
<th>Eliminating Common Prefixes</th>
<th>FIRST/FOLLOW conflicts</th>
</tr>
</thead>
</table>

LL Parsing

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign
Department of Computer Science
Objectives

The topic for this lecture is a kind of grammar that works well with recursive-descent parsing.

➤ Know how to tell if a grammar is LL.
➤ Know what parsing technique will work with an LL grammar.
➤ Know how to detect and eliminate left recursion.
➤ Know how to detect and eliminate common prefixes.
➤ Know how to detect and eliminate conflicts with first and follow sets.
What is LL(n) Parsing?

- An LL parse uses a Left-to-right scan and produces a Leftmost derivation, using n tokens of lookahead.
- A.K.A. Top-Down Parsing

Example Grammar:

```
S → + E E  
E → int  
E → * E E
```

Syntax Tree:

```
S
```

Example Input:

```
+ 2 * 3 4
```
What is \(\text{LL(n)} \) Parsing?

- An LL parse uses a \textbf{Left-to-right} scan and produces a \textbf{Leftmost} derivation, using \(n \) tokens of lookahead.
- \textbf{A.K.A. Top-Down Parsing}

\textbf{Example Grammar:}

- \(S \rightarrow + \ E \ E \)
- \(E \rightarrow \text{int} \)
- \(E \rightarrow * \ E \ E \)

\textbf{Syntax Tree:}

```
  S
   \downarrow
   +
     \_\_\_
     E
     \_\_\_
     E
```

\textbf{Example Input:}

```
+ 2 * 3 4
```
What is LL(n) Parsing?

An LL parse uses a Left-to-right scan and produces a Leftmost derivation, using n tokens of lookahead.

A.K.A. Top-Down Parsing

Example Grammar:

```
S → + E E
E → int
E → * E E
```

Syntax Tree:

```
S  E  E
+  E  2
+  E  3 4
```

Example Input:

```
+ 2  * 3 4
```
What is LL(n) Parsing?

- An LL parse uses a Left-to-right scan and produces a Leftmost derivation, using n tokens of lookahead.
- A.K.A. Top-Down Parsing

Example Grammar:

```
S → + E E
E → int
E → * E E
```

Syntax Tree:
```
S → + E E
     /   \
    +   E E
       /   \
      E E
```

Example Input:
```
+ 2 * 3 4
```
What is LL(n) Parsing?

- An LL parse uses a **Left-to-right scan** and produces a **Leftmost derivation**, using **n** tokens of lookahead.
- A.K.A. **Top-Down Parsing**

Example Grammar:

\[
S \rightarrow + \ E \ E \\
E \rightarrow \text{int} \\
E \rightarrow * \ E \ E
\]

Example Input:

+ 2 * 3 4

Syntax Tree:

```
     S
    / \     /
   +   E   E
  /  \ /
2   * E
  |  /
  |  E
   | /
   | E
   |/
  3
```
What is LL(n) Parsing?

- An LL parse uses a **Left-to-right scan** and produces a **Leftmost derivation**, using **n** tokens of lookahead.
- A.K.A. **Top-Down Parsing**

Example Grammar:

\[
S \rightarrow + \ E \ E \\
E \rightarrow \text{int} \\
E \rightarrow * \ E \ E
\]

Example Input:

\[
+ \ 2 \ * \ 3 \ 4
\]
How to Implement It

Interpreting a Production

- Think of a production as a function definition.
- The LHS is the function being defined.
- Terminals on RHS are commands to consume input.
- Non-terminals on RHS are subroutine calls.

- For each production, make a function of type \([\text{String}] \rightarrow (\text{Tree}, [\text{String}])\)
 - input is a list of tokens
 - output is a syntax tree and remaining tokens.
- Of course, you need to create a type to represent your tree.
Things to Notice

Key Point — Prediction

► Each function immediately checks the first token of the input string to see what to do next.

```
getE [] = undefined
getE ('*':xs) =
    let e1,r1 = getE xs
    e2,r2 = getE r1
    in (ETimes e1 e2, r2)
getE .... -- other code follows
```
Left Recursion

Left Recursion is Bad

- A rule like $E \rightarrow E \; + \; E$ would cause an infinite loop.

```haskell
getE xx =
    let e1,r1 = getE xx
        ('+':r2) = r1
        e2,r3 = getE r2
    in (EPlus e1 e2, r3)
```
Rules with Common Prefixes

Common Prefixes are Bad

- A pair of rules rule like \[E \rightarrow \quad - E \quad \mid \quad - E E \] would confuse the function.

Which version of the rule should be used?

1. `getE ('-':xs) = ... -- unary rule`
2. `getE ('-':xs) = ... -- binary rule`

- NB: Common prefixes must be for the same non-terminal. E.g., \(E \rightarrow x A \) and \(S \rightarrow x B \) do not count as common prefixes.
The Idea

Consider deriving $i++++$ from the following grammar:

$E \rightarrow E +$ "We can have as many +s as we want at the end of the sentence."

$E \rightarrow i$ "The first word must be an i"
More complicated example

Consider the following grammar. What does it mean?

\[B \rightarrow Bxy \mid Bz \mid q \mid r \]

- At the end can come any combination of \(x \), \(y \) or \(z \)
- At the beginning can come \(q \) or \(r \)
Eliminating the Left Recursion

We can rewrite these grammars

\[E \rightarrow E + \mid i \]
\[B \rightarrow Bxy \mid Bz \mid q \mid r \]

using the following transformation:

- Productions of the form \(S \rightarrow \beta \) become \(S \rightarrow \beta S' \).
- Productions of the form \(S \rightarrow S\alpha \) become \(S' \rightarrow \alpha S' \).
- Add \(S' \rightarrow \epsilon \).

Result:

\[E \rightarrow iE' \]
\[E' \rightarrow +E' \mid \epsilon \]
\[B \rightarrow qB' \mid rB' \]
\[B' \rightarrow xyB' \mid zB' \mid \epsilon \]
Mutual Recursions!

Things are slightly more complicated if we have mutual recursions.

\[
A \rightarrow Aa \mid Bb \mid Cc \mid q \\
B \rightarrow Ax \mid By \mid Cz \mid rA \\
C \rightarrow Ai \mid Bj \mid Ck \mid sB
\]

How to do it:

- Take the first symbol (A) and eliminate immediate left recursion.
- Take the second symbol (B), and substitute left recursions to A. Then eliminate immediate left recursion in B.
- Take the third symbol (C) and substitute left recursions to A and B. Then eliminate immediate left recursion in C.
Left Recursion Example

Here is a more complex left recursion.

\[
A \rightarrow Aa \mid Bb \mid Cc \mid q \\
B \rightarrow Ax \mid By \mid Cz \mid rA \\
C \rightarrow Ai \mid Bj \mid Ck \mid sB
\]

First we eliminate the left recursion from \(A \).

\[
A \rightarrow Aa \mid Bb \mid Cc \mid q
\]

becomes

\[
A \rightarrow BbA' \mid CcA' \mid qA' \\
A' \rightarrow aA' \mid \epsilon
\]
Left Recursion Example, 2

We substituting in the new definition of A, and now we will work on the B productions.

$A \rightarrow BbA' | CcA' | qA'$
$A' \rightarrow aA' | \epsilon$

$B \rightarrow Ax | By | Cz | rA$

$C \rightarrow Ai | Bj | Ck | sB$

First, we eliminate the “backward” recursion from B to A.

$B \rightarrow Ax$ becomes

$B \rightarrow BbA'x | CcA'x | qA'x$
Left Recursion Example, 3

\[
A \rightarrow BbA' \mid CcA' \mid qA' \\
A' \rightarrow aA' \mid \epsilon \\
B \rightarrow BbA'x \mid CcA'x \mid qA'x \mid By \mid Cz \mid rA \\
C \rightarrow Ai \mid Bj \mid Ck \mid sB \\
\]

Now we can eliminate the simple left recursion in \(B \), to get

\[
B \rightarrow CcA'xB' \mid qA'xB' \mid CzB' \mid rAB' \\
B' \rightarrow bA'xB' \mid yB' \mid \epsilon
\]
Left Recursion Example, 4

\[
\begin{align*}
A & \rightarrow BbA' \mid CcA' \mid qA' \\
A' & \rightarrow aA' \mid \epsilon \\
B & \rightarrow CcA'xB' \mid qA'xB' \mid CzB' \mid rAB' \\
B' & \rightarrow bA'xB' \mid yB' \mid \epsilon \\
C & \rightarrow Ai \mid Bj \mid Ck \mid sB
\end{align*}
\]

Now production C: first, replace left recursive calls to A...

\[
C \rightarrow \text{B} \ bA'i \mid CcA'i \mid qA'i \mid \text{B} \ j \mid Ck \mid sB
\]

Next, replace left recursive calls to B (this gets messy)...

\[
C \rightarrow \text{CcA'xB'} \ \text{bA'i} \mid \text{qA'xB'} \ \text{bA'i} \mid \text{CzB'} \ \text{bA'i} \mid \text{rAB'} \ \text{bA'i} \\
\text{CcA'xB'} \ j \mid \text{qA'xB'} \ j \mid \text{CzB'} \ j \mid \text{rAB'} \ j \\
\text{CcA'}i \mid \text{qA'}i \mid \text{Ck} \mid \text{sB}
\]
Left Recursion Example, 5

Reorganizing C, we have

\[
C \rightarrow \quad qA'xB'bA'i | rAB'bA'i | qA'xB'j | rAB'j | qA'i | sB \\
\quad CcA'xB'bA'i | CzB'bA'i | CcA'xB'j | CzB'j | CcA'i | Ck \\
\]

Eliminating left recursion gives us

\[
C \rightarrow \quad qA'xB'bA'iC' | rAB'bA'iC' | qA'xB'jC' \\
\quad | rAB'jC' | qA'iC' | sBC' \\
C' \rightarrow \quad cA'xB'bA'iC' | zB'bA'iC' | cA'xB'jC' \\
\quad | zB'jC' | cA'iC' | kC' | \epsilon
\]
The result...

Our final grammar is now

\[A \to BbA' \mid CcA' \mid qA' \]
\[A' \to aA' \mid \epsilon \]
\[B \to CcA'xB' \mid qA'xB' \mid CzB' \mid rAB' \]
\[B' \to bA'xB' \mid yB' \mid \epsilon \]
\[C \to qA'xB'bA'iC' \mid rAB'bA'iC' \mid qA'xB'jC' \]
\[\mid rAB'jC' \mid qA'iC' \mid sBC' \]
\[C' \to cA'xB'bA'iC' \mid zB'bA'iC' \mid cA'xB'jC' \]
\[\mid zB'jC' \mid cA'iC' \mid kC' \mid \epsilon \]

Beautiful, isn’t it? I wonder why we don’t do this more often?

▶ Disclaimer: if there is a cycle (\(A \to^+ A \)) or an epsilon production (\(A \to \epsilon \)) then this technique is not guaranteed to work.
Common Prefix

This grammar has common prefixes.

\[A \to xyB \mid CyC \mid q \]
\[B \to zC \mid zx \mid w \]
\[C \to y \mid x \]

To check for common prefixes, take a non-terminal and compare the First sets of each production.

Production	FirstSet
\(A \to xyB \) | \(\{x\} \)
\(A \to CyC \) | \(\{x, y\} \)
\(A \to q \) | \(\{q\} \)

If we are viewing an \(A \), we will want to look at the next token to see which \(A \) production to use. If that token is \(x \), then which production do we use?
Left Factoring

If $A \rightarrow \alpha \beta_1 \mid \alpha \beta_2 \mid \gamma$ we can rewrite it as

$$A \rightarrow \alpha A' \mid \gamma$$

$$A' \rightarrow \beta_1 \mid \beta_2$$

So, in our example:

$A \rightarrow xyB \mid CyC \mid q$ becomes $A \rightarrow xA' \mid q \mid yyC$

$B \rightarrow zC \mid zx \mid w$ becomes $A' \rightarrow yB \mid yC$

$C \rightarrow y \mid x$ becomes $B \rightarrow zB' \mid w$

$B' \rightarrow C \mid x$

$C \rightarrow y \mid x$

Sometimes you’ll need to do this more than once. Note that this process can destroy the meaning of the nonterminals.
Epsilon Productions

- Epsilon productions have to be handled with care.

\[
\begin{align*}
A & \rightarrow \ Bc \\
& \quad | \ x \\
B & \rightarrow \ c \\
& \quad | \ \epsilon
\end{align*}
\]

Is this LL?
Epsilon Productions

\[A \rightarrow Bc \]
\[\text{or } A \rightarrow x \]
\[B \rightarrow c \]
\[\text{or } B \rightarrow \epsilon \]

- \(\text{FOLLOW}(B) = \{c\} \), and \(\text{FIRST}(B) = \{c\} \), so we have a conflict when trying to parse \(B \).
- We can substitute the \(B \) rule into the \(A \) rule to fix this...
- Be sure to check if you have introduced a common prefix though!

\[A \rightarrow cc \]
\[\text{or } A \rightarrow c \]
\[\text{or } A \rightarrow x \]
\[\Rightarrow \]

\[A \rightarrow cA' \]
\[\text{or } A \rightarrow x \]
\[A' \rightarrow c \]
\[\text{or } A' \rightarrow \epsilon \]