The Rules

Axiom 1: Skip

\{p\}_{\text{skip}} \{p\}

Axiom 2: Assignment

\{p[u := t]\}_{u := t} \{p\}

Rule 3: Composition

\frac{\{p\}S_1\{r\}, \{r\}S_2\{q\}}{\{p\}S_1; S_2\{q\}}

Rule 4: Conditional

\frac{\{p \land B\}S_1\{q\}, \{p \land \neg B\}S_2\{q\}}{\{p\}_{\text{if } B \text{ then } S_1 \text{ else } S_2 \text{ fi} \{q\}}

Rule 5: Loop

\frac{\{p \land B\}S\{p\}}{\{p\}_{\text{while } B \text{ do } S \text{ od} \{p \land \neg B\}}

Rule 6: Consequence

\frac{p \rightarrow p_1, \{p_1\}S\{q_1\}, q_1 \rightarrow q}{\{p\}S\{q\}}
Exploring the Rules

**Problem 1)** The assignment rule is this: \( \{p[u := t]\} u := t\{p\} \)

Why is it that way? What if it had been \( \{p\} u := t\{p[u := t]\} \) instead?

**Problem 2)** Let postcondition \( q \equiv x = 10 \). Let program \( S \) be \( x := y * 2 \). Use Axiom 2 to derive the precondition such that \( \models \{p\} S\{q\} \).

**Problem 3)** Let postcondition \( q \equiv x > 5 \). Let \( S_1 \) be \( x := x + 10 \). Let \( S_2 \) be skip. Choose a precondition \( p \) and test \( B \) such that \( \models \{p\} \) if \( B \) then \( S_1 \) else \( S_2 \) fi \( \{q\} \). Try to make \( p \) as un-restrictive as you can.

**Problem 4)** Suppose we have \( \models \{p\} S\{q\} \). Suppose now I also have a random assertion \( r \). Do you think we also have \( \models \{p\} S\{q \lor r\} \)? Why or why not?
Weakness

**Problem 5)** Rank the following logical assertions from strongest to weakest. Note that the ranking is not necessarily linear.

- $a \equiv \text{false}$
- $b \equiv \text{true}$
- $c \equiv x > 10 \lor y < 10$
- $d \equiv x > 10$
- $e \equiv x > 5 \lor y < 5$
- $f \equiv x > 5 \land y < 5$
- $g \equiv x > 5$

**Problem 6)** Suppose $\{x > 0\} S\{y < 0\}$. Which of the following are also true?

1. $\{x > 0\} S\{y < 0 \lor x > 0\}$.
2. $\{x > 0 \land y < 0\} S\{y < 0\}$.
3. $\{y < 0\} S\{x > 0\}$.
4. $\{x > 0\} S\{y < 0 \land x > 0\}$.
5. $\{x > 0 \lor y < 0\} S\{y < 0\}$.
6. $\{x > 0\} S\{y < 10\}$.
7. $\{x > -10\} S\{y < 0\}$. 
Loop Invariants

(Extra Section)
We want to take the product of the elements of an array.

• The postcondition is \( r \equiv x = \Pi_{j=0}^{A-1} a[j]. \)
• The loop invariant is \( p \equiv x = \Pi_{j=0}^{i} a[j]. \)
• The loop bound is \( i < |A|. \)

**Problem 7)** Write the code to establish the loop invariant, and give a proof outline for it.

**Problem 8)** Write the loop, and show that the loop body preserves the loop invariant.

**Problem 9)** Show that the loop achieves the postcondition on termination.
Manager or Reflector: Consider the objectives of this activity and your team's experience with it, and then answer the following questions after consulting with your team.

1. What was a strength of this activity? List one aspect that helped it achieve its purpose.

2. What is one thing we could do to improve this activity to make it more effective?

3. What insights did you have about the activity, either the content or at the meta level?
Hoare Triples and Loop Partial Correctness--- Reflector's Report

<table>
<thead>
<tr>
<th>Role</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manager</td>
<td>Keeps team on track</td>
</tr>
<tr>
<td>Recorder</td>
<td>Records decisions</td>
</tr>
<tr>
<td>Reporter</td>
<td>Reports to Class</td>
</tr>
<tr>
<td>Reflector</td>
<td>Assesses team performance</td>
</tr>
</tbody>
</table>

1. What was a strength of your team's performance for this activity?

2. What could you do next time to increase your team's performance?

3. What insights did you have about the activity or your team's interaction today?