Part 1 --- Ambiguous Grammars

Consider the following ambiguous grammar.

Example 1)

\[
E \rightarrow E + E \\
| E \ast E \\
| - E \\
| i
\]

Problem 1) Prove that this grammar is ambiguous by giving an input with two parse trees.

Problem 2) The instructor will give you a version of this grammar that is not ambiguous. We will let \(\ast \) and \(+\) have their usual precedences, and associate to the left. Unary minus binds most tightly. Show that your input has only one parse tree now.

\[
E \rightarrow E + F | F \\
F \rightarrow F \ast U | U \\
U \rightarrow - U | i
\]

Problem 3) Stratification removed the ambiguities. How did it do that?
Here is a new grammar for you.

\[E \rightarrow E \ a \ E \quad | \quad E \ b \ E \quad | \quad E \ x \ E \quad | \quad E \ y \ E \quad | \quad i \]

Problem 4) Prove that this grammar is ambiguous by giving an input that has two parse trees.

Problem 5) Stratify the grammar to remove ambiguity. Let \(a \) have highest precedence, associating to the left. Next is \(b \), associating to the left. Then we have \(y \) associating to the right. Let \(x \) have the lowest precedence, and associate to the right. Show that your sentence has only one parse tree.
Part 2 --- First and Follow Sets

Calculate the first and follow sets for these grammars.

Example 2)

\[
S \rightarrow a \ E \ b \\
| \ x \\
E \rightarrow x \ y \\
| \ \epsilon
\]

Problem 6)

\[
S \rightarrow a \ E \ F \ b \\
| \ x E \ F \\
E \rightarrow x \ y \\
| \ \epsilon \\
F \rightarrow E \ z \ q \\
| \ w \ S
\]

Problem 7)

\[
S \rightarrow a \ F \ E \ b \\
| \ x F \ E \\
E \rightarrow x \ y \\
| \ \epsilon \\
F \rightarrow E \ z \ q \\
| \ w \ S
\]